
RedundantSensors

Davide Marcantonio, Stefano Tonetta

March 17, 2014

Abstract

The proposed model represents a component that senses an input variable
and handles the failure of the sensing function by using two redundant sensors.
The modeling language used is OCRA [CDT13] and the model itself is inspired
by an industrial case study developed within the ESA project FoReVer [FOR].
Beside the functional aspect it is considered an error model concerning the
possibility of sensor failures in terms of their outcomes. The scope of the system
is thus to guarantee a reliable output even in presence of such failures, under
some assumptions. These assumptions concern the failure occurrences and the
variance of the environmental input. Both sensor outcomes are monitored in
order to detect and possibly isolate failures in order to determine the most
proper action to maintain the output value reliable.

I

Contents

1 Modeling paradigm 1

2 Model structure 1
2.1 Overview . 1
2.2 Parameters . 1
2.3 Sensors . 2

2.3.1 Nominal version . 2
2.3.2 Extended version . 2

2.4 Monitors . 2
2.5 Selector . 4

3 Requirements refinement 4

4 Formal architecture 5
4.1 RedundantSensors component . 5

4.1.1 Input ports . 5
4.1.2 Output ports . 5
4.1.3 Contract system error . 5
4.1.4 Contract single tmp failure . 6

4.2 Sensor . 6
4.2.1 Input Ports . 6
4.2.2 Ouput ports . 6
4.2.3 Contract nominal . 6
4.2.4 Contract failure . 6

4.3 VarMonitor . 6
4.3.1 Input Ports . 6
4.3.2 Ouput ports . 7
4.3.3 Contract isolate . 7

4.4 GenMonitor . 7
4.4.1 Input Ports . 7
4.4.2 Ouput ports . 7
4.4.3 Contract detect . 7

4.5 Selector . 7
4.5.1 Input Ports . 7
4.5.2 Output ports . 8
4.5.3 Contract Selector . 8

II

1 Modeling paradigm

The architecture is modeled in a compositional way: each component is defined in
terms of its interface with input and output ports specification. The connections
within components are defined linking the ports of the components pairing an input
port with an output one. The model is then enriched with contracts that define
an assume/guarantee reasoning on the I/O properties of components, i.e. some
assumptions on the inputs, guaranteeing certain properties on output. Since each
component has one or more contracts it is then possible to formalize and refine top
level requirements along the architecture levels. A state machine can be associated
to each leaf component (i.e. a component not further refined) as behavioral model.
The behavior of a composite component (including the top-level component) is given
by the composition of such state machines.

OCRA supports the verification of the contract refinement and the verification
of the component state machine against the component contracts.

Within this document and case study, we consider a synchronous discrete-time
semantics of the components. We use LTL [Pnu77] as specification language for the
contracts.

The system model has two versions, with or without the failures as part of the
model. We refer to the latter version as the nominal model, and to former as the
extended model.

2 Model structure

2.1 Overview

In this case the system component (i.e. the top level one) contains six subcompo-
nents: two sensors, three monitors and a selector. All components ports have a
domain or type of data associated. The only types used in the model are boolean
({TRUE,FALSE}) and bounded integers, which represent the readings from the
environment and the sensors. The model is specified in two versions, one nominal
and the other with the explicit failure model. The only differences are the system
input that includes the two failure flags for the sensors and the sensors components.
The system is at discrete time. All components have an instantaneous reaction of
propagation whereas the Selector has a reaction that takes one tick of the system.
This is necessary to have the last value to perform the variance check in the monitors.
The overall reaction of the system is thus one tick: the corresponding output for a
given input is the one generated in the next state.

2.2 Parameters

The domain of the data variables is defined by an integer interval between two fixed
bounds ({lower bound..upper bound}). The system is then at finite precision values,
i.e. the domain of the variables involved in the system is finite. It is important to no-
tice that in the model are used parameters to specify properties and contracts, in par-
ticular: max sensor error, max variance, lower bound and upper bound. These
parameters are contained in the parameter.h header file. Note that these parameters
are arbitrary chosen but fixed. The system is scalable on all these parameters.

1

Figure 1: Architecture layout of extended version

2.3 Sensors

The two sensor components are identical. They receive as input a value from the
environment that represents the physical quantity that they should read and then
give a correlated outcome.

2.3.1 Nominal version

The nominal version of the sensor represents the version without considering the
error model, it thus have one port for the input and one for the output. The nom-
inal behavior is that at each value in input the sensor adds a non-deterministic but
bounded value that simulates the intrinsic error of the sensor. This error is bounded
in absolute value at max sensor error. The sensor adds this error cutting the re-
sulting sum at the domain range and thus the sensor output is always inside the data
domain. In the nominal case the output value of the sensor is function only of the
input value.

2.3.2 Extended version

To model the error of a possible failure on a sensor, it has been added a failure
flag input for each sensor. It is a boolean that determines wether a sensor is failed
(flag=TRUE) or non failed (flag=FALSE). If the sensor is not failed its behavior
is the nominal one, whereas when failed the sensor simply gives as output a non-
deterministic value inside the data domain, completely unrelated with the input
value.

2.4 Monitors

There are three monitors of two types: two variance monitors and a general one.

General monitor The general monitor has two input ports that are linked to the
two output ports of the sensors. It implements the failure detection feature in the
system comparing the two sensor outcomes. The check is based on the maximum

2

sensor error assumption: i.e. if the sensors are both correctly working then their
reciprocal output difference in the worst case is twice the maximum sensor error,
in particular when one sensor error is at -max sensor error and the other has its
error at the other extreme of the error interval +max sensor error. Basing on this
observation we can say that if the difference of the two sensor outputs is more, in
absolute value, than twice the maximum sensor error, then a failure is surely present
in one of the two sensors. The output of this monitor is a boolean Valid that is
equal to true if no failure is detected and false otherwise:

V alid := |In1− In2| ≤ 2 ∗max sensor error

The condition for a failure is only sufficient, so when a failure is detected it is surely
present in one of the sensors, but when a failure is not detected not necessarily there
is absence of failures.

Variance monitor The variance monitors are two: one is relative to the first sensor
whilst the other to the second one. These monitors implement the feature of failure
isolation in the system, therefore when a failure is detected by the general monitor
then the system tries to isolate which sensor is causing the failure (it is assumed at
top level that the sensors are not both failed at the same time). This monitor is based
on the assumption regarding the input variance. The variance monitor component
is thought to compare the current outcome of a sensor with the last output of the
system. Since the system takes one tick to evaluate an input the out comes out in
the next step. The variance monitor checks the consistency of a sensor output on the
base of its the variance in each tick considering that the system variance is assumed
bounded and that the maximum sensor error is fixed. The reasoning is that if the
last value is considered reliable then:

|real last− last| ≤ max sensor error

Maximum system error reasoning Thus in the worst case the error in module
is equal to the maximum sensor error. If then the input changes as much as possible
in a state, i.e. it changes of the value of the maximum variance and in the current
state the sensor introduces another worst error, then the overall error is finally given
in terms of:

error = |last− current| ≤ max sys error

where max sys error is the maximum between:

Max{2 ∗max sensor error,max sensor error + max variance}

This is due to the general monitor guarantee, because the last value given as output
in a failure case with no isolation has the maximum possible error equal to twice the
sensor error. If the maximum variance is less than the maximum sensor error:

max sensor error < max variance

then the worst case the error is not given by the sum: max sensor error + max variance,
but by 2*max sensor error since:

max sensor error + max variance < 2 ∗max sensor error

3

2.5 Selector

This component receives as input the two sensors outputs and the three monitor
outcomes. Basing onto these data the selector gives as output either the average of
the sensors or the value of one sensor or the last value given in output. The average
is necessary to maintain the performances because in the worst case the general
monitor does not detects a failure and one sensor is far from the real input by its
maximum error, then the other sensor is failed but far, in absolute value from the
first sensor by at most twice the max sensor error. In this case the overall error is
three times the max sensor error, doing the average of the two sensor is reducing
the error at twice the maximum sensor error. This component as the name suggests
selects the value to be given as output basing on the information from the monitors,
that are the failure detection and isolation components. After the hierarchy of the
FDI system, the selector primarily controls the general monitor V alid flag, if true
then no failure is detected and the output is the average of the two sensors, if false
it checks the variance monitor flags trying to determine which sensor is failed and
isolate the problem. If one variance monitor valid flag is at false the failure had been
isolated on the relative sensor and the output in this case is the non failed sensor
value. If none of the two variance monitors isolate the failure then the output is
the last value given as output. This last value, when a failure is detected, is reliable
because of the assumptions: there are no possible double failures so if a failure is
happening in the current state then in the previous state there were no failures at
all. Indeed the first state is assumed correct and this reasoning can propagate by
induction. Considering that the maximum error of the system in the previous step
is (see 2.4):

|last− current| ≤ max sys error

Then the worst error of the system is bounded at this constant max sys error that
for definition is equal to the maximum between max variance + max sensor error

and 2*max sensor error.

3 Requirements refinement

The top level requirement states that the output has always to be consistent with the
relative input of the system under some assumptions. To formalize this we say that
the difference in absolute value of an output with its respective input is bounded by
a constant:

|input− ouput| <= max sys error

Under the following assumptions:

• consistent first state, in the first state both sensors work correctly,

• bounded variance of the input,

• singular and instantaneous failures, the two sensors cannot be failed at
the same time and when a failure occurs, in the next state there are no ones.

This requirement is then refined in the various subcomponents requirements that
are described component per component in the following section. The refinement is
such that the composition of the requirements of the subcomponents matches the
top level one.

4

4 Formal architecture

The architecture of the model, as briefly described, is composed of a system com-
ponent RedundantSensor refined in: two redundant sensors, three monitors and a
selector. The system has only one layer of refinement:

• RedundantSensor

– Sensor1

– Sensor2

– VarMonitor1

– VarMonitor2

– GenMonitor

– Selector

4.1 RedundantSensors component

At top level the nominal system has two ports: one for the input and another one for
the output, both within the data range specified. In the extended model was added
a pair of failure flags as input ports from the environment. These flags induct the
sensors in behaving correctly or simulating a failure.

4.1.1 Input ports

The input interface in the nominal version has only the reading port and in the
extended version the two flags for failures also.

reading: value domain; physical quantity then measured by the sensors

fail s1: boolean; failure flag of Sensor1

fail s2: boolean; failure flag of Sensor2

When a failure flag is false the respective sensor behaves nominally, whereas when
this flag is true the sensor behaves in failure mode and give as its output a random
value not consistent neither based on the reading input.

4.1.2 Output ports

out: value domain;

4.1.3 Contract system error

Nominal system top level contract.

assume: always

(abs_diff(reading,next(reading)) <= max_variance);

guarantee: always

(abs_diff(reading, next(out)) <=

max_sys_error);

5

4.1.4 Contract single tmp failure

Extended version version top level contract.

assume:

(not fail_s1 and not fail_s2) and

always (

(abs_diff(reading,next(reading)) <= max_variance) and

not (fail_s1 and fail_s2) and

((fail_s1 or fail_s2) implies then

(not fail_s1 and not fail_s2)));

guarantee: always

(abs_diff(reading, next(out)) <=

max_sys_error);

4.2 Sensor

4.2.1 Input Ports

The nominal sensor has only the In port, the Fail one is only present in the extended
model of the sensor.

In: value domain;

Fail: boolean;

4.2.2 Ouput ports

Out: value domain;

4.2.3 Contract nominal

This is the nominal version contract and specifies that without assumptions the
output error is bounded with respect to the input at the maximum sensor error.

assume: TRUE;

guarantee: always (abs_diff(In, Out) <= max_sensor_error);

4.2.4 Contract failure

The failure version contract states that if the failure flag is false the output error
is bounded as in the nominal case, otherwise nothing is guaranteed on the output
value.

assume: TRUE;

guarantee: always

(not Fail implies

(abs_diff(In, out) <= max_sensor_error));

4.3 VarMonitor

4.3.1 Input Ports

In: value domain; sensor outcome

Last: value domain; last output of the system

6

4.3.2 Ouput ports

Valid: boolean;

• Valid = true: no failure detected

• Valid = false: failure detected, the sensor output is not reliable

4.3.3 Contract isolate

assume: TRUE;

guarantee: always

(Valid iff

(abs_diff(In, Last) <=

((2*max_sensor_error) + max_variance)));

4.4 GenMonitor

4.4.1 Input Ports

In1: value domain; Sensor1 outcome

In2: value domain; Sensor2 outcome

4.4.2 Ouput ports

Valid: boolean;

• Valid = true: no failure detected, not ensures absence of failures

• Valid = false: failure detected

Of course a failure can happen and not even being detected if casually the non-
deterministic value is near the real reading.

4.4.3 Contract detect

assume: TRUE;

guarantee: always

(Valid iff

(abs_diff(In1,In2) <= 2*max_sensor_error));

4.5 Selector

4.5.1 Input Ports

sensor1 out: value domain;

sensor2 out : value domain;

variance monitor1 : boolean;

variance monitor2 : boolean;

general monitor : boolean;

7

4.5.2 Output ports

out : value domain;

4.5.3 Contract Selector

The contract means:

• if no failure is detected, i.e. general monitor is true then the outcome is
chosen to be the average of the sensors

• if the general monitor detects a failure and the sensor failed is detected by
having a variance monitor false, then the outcome is the functioning sensor

• in case of no isolation the last value is used as output

assume: TRUE;

guarantee: always

((general_monitor implies

next(out) = (sensor1_out+sensor2_out)/2) and

((not general_monitor and

not variance_monitor1 and variance_monitor2) implies

next(out) = sensor2_out) and

((not general_monitor and

not variance_monitor2 and variance_monitor1) implies

next(out) = sensor1_out) and

((not general_monitor and variance_monitor1 and

variance_monitor2) or

(not general_monitor and not variance_monitor1 and

not variance_monitor2) implies

next(out) = out));

8

References

[CDT13] Alessandro Cimatti, Michele Dorigatti, and Stefano Tonetta. Ocra: A tool
for checking the refinement of temporal contracts. In ASE [DBL13], pages
702–705.

[DBL13] 2013 28th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013.
IEEE, 2013.

[FOR] FoReVer project. https://es.fbk.eu/projects/forever/.

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In FOCS, pages 46–57.
IEEE Computer Society, 1977.

9

https://es.fbk.eu/projects/forever/

	Modeling paradigm
	Model structure
	Overview
	Parameters
	Sensors
	Nominal version
	Extended version

	Monitors
	Selector

	Requirements refinement
	Formal architecture
	RedundantSensors component
	Input ports
	Output ports
	Contract system_error
	Contract single_tmp_failure

	Sensor
	Input Ports
	Ouput ports
	Contract nominal
	Contract failure

	VarMonitor
	Input Ports
	Ouput ports
	Contract isolate

	GenMonitor
	Input Ports
	Ouput ports
	Contract detect

	Selector
	Input Ports
	Output ports
	Contract Selector

